Rank Minimization via Online Learning

ثبت نشده
چکیده

Minimum rank problems arise frequently in machine learning applications and are notoriously difficult to solve due to the non-convex nature of the rank objective. In this paper, we present the first online learning approach for the problem of rank minimization of matrices over polyhedral sets. In particular, we present two online learning algorithms for rank minimization our first algorithm is a multiplicative update method based on a generalized experts framework, while our second algorithm is a novel application of the online convex programming framework (Zinkevich, 2003). In the latter, we flip the role of the decision maker by making the decision maker search over the constraint space instead of feasible points, as is usually the case in online convex programming. A salient feature of our online learning approach is that it allows us to give the first provable approximation guarantees for the rank minimization problem over polyhedral sets. We demonstrate the effectiveness of our methods on synthetic examples, and on the real-life application of low-rank kernel learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Learning for Classification of Low-rank Representation Features and Its Applications in Audio Segment Classification

In this paper, a novel framework based on trace norm minimization for audio segment is proposed. In this framework, both the feature extraction and classification are obtained by solving corresponding convex optimization problem with trace norm regularization. For feature extraction, robust principle component analysis (robust PCA) via minimization a combination of the nuclear norm and the l1-n...

متن کامل

Learning from Pairwise Preference Data using Gaussian Mixture Model

In this paper we propose a fast online preference learning algorithm capable of utilizing incomplete preference information. It is based on a Gaussian mixture model that learns soft pairwise label preferences via minimization of the proposed soft rank loss measure. Standard supervised learning techniques, such as gradient descent or Expectation Maximization can be used to find the unknown model...

متن کامل

Multi-Prototype Label Ranking with Novel Pairwise-to-Total-Rank Aggregation

We propose a multi-prototype-based algorithm for online learning of soft pairwise-preferences over labels. The algorithm learns soft label preferences via minimization of the proposed soft rank-loss measure, and can learn from total orders as well as from various types of partial orders. The soft pairwise preference algorithm outputs are further aggregated to produce a total label ranking predi...

متن کامل

Learning deep similarity models with focus ranking for fabric image retrieval

Fabric image retrieval is beneficial to many applications including clothing searching, online shopping and cloth modeling. Learning pairwise image similarity is of great importance to an image retrieval task. With the resurgence of Convolutional Neural Networks (CNNs), recent works have achieved significant progresses via deep representation learning with metric embedding, which drives similar...

متن کامل

Bridge the Gap Between Group Sparse Coding and Rank Minimization via Adaptive Dictionary Learning

Both sparse coding and rank minimization have led to great successes in various image processing tasks. Though the underlying principles of these two approaches are similar, no theory is available to demonstrate the correspondence. In this paper, starting by designing an adaptive dictionary for each group of image patches, we analyze the sparsity of image patches in each group using the rank mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008